Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

二叉查找树(BST)

二叉查找树(Binary Search Tree)是一种基于二叉树的数据结构,它具有以下特点:

  1. 左子树所有节点的值均小于根节点的值。
  2. 右子树所有节点的值均大于根节点的值。
  3. 左右子树也分别为二叉查找树。

当二叉查找树是平衡的时候,也就是树的每个节点的左右子树深度相差不超过 1 的时候,查询的时间复杂度为 O(log2(N)),具有比较高的效率。然而,当二叉查找树不平衡时,例如在最坏情况下(有序插入节点),树会退化成线性链表(也被称为斜树),导致查询效率急剧下降,时间复杂退化为 O(N)。

也就是说,二叉查找树的性能非常依赖于它的平衡程度,这就导致其不适合作为 MySQL 底层索引的数据结构。

为了解决这个问题,并提高查询效率,人们发明了多种在二叉查找树基础上的改进型数据结构,如平衡二叉树、B-Tree、B+Tree 等。

AVL 树

AVL 树是计算机科学中最早被发明的自平衡二叉查找树,它的名称来自于发明者 G.M. Adelson-Velsky 和 E.M. Landis 的名字缩写。AVL 树的特点是保证任何节点的左右子树高度之差不超过 1,因此也被称为高度平衡二叉树,它的查找、插入和删除在平均和最坏情况下的时间复杂度都是 O(logn)。

AVL 树采用了旋转操作来保持平衡。主要有四种旋转操作:LL 旋转、RR 旋转、LR 旋转和 RL 旋转。其中 LL 旋转和 RR 旋转分别用于处理左左和右右失衡,而 LR 旋转和 RL 旋转则用于处理左右和右左失衡。

由于 AVL 树需要频繁地进行旋转操作来保持平衡,因此会有较大的计算开销进而降低了数据库写操作的性能。并且, 在使用 AVL 树时,每个树节点仅存储一个数据,而每次进行磁盘 IO 时只能读取一个节点的数据,如果需要查询的数据分布在多个节点上,那么就需要进行多次磁盘 IO。 磁盘 IO 是一项耗时的操作,在设计数据库索引时,我们需要优先考虑如何最大限度地减少磁盘 IO 操作的次数。

实际应用中,AVL 树使用的并不多。

红黑树

红黑树的诞生就是为了解决二叉查找树的缺陷。

二叉查找树是一种基于比较的数据结构,它的每个节点都有一个键值,而且左子节点的键值小于父节点的键值,右子节点的键值大于父节点的键值。这样的结构可以方便地进行查找、插入和删除操作,因为只需要比较节点的键值就可以确定目标节点的位置。但是,二叉查找树有一个很大的问题,就是它的形状取决于节点插入的顺序。如果节点是按照升序或降序的方式插入的,那么二叉查找树就会退化成一个线性结构,也就是一个链表。这样的情况下,二叉查找树的性能就会大大降低,时间复杂度就会从 O(logn) 变为 O(n)。

红黑树的诞生就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

红黑树是一种自平衡二叉查找树,通过在插入和删除节点时进行颜色变换和旋转操作,使得树始终保持平衡状态,它具有以下特点:

  1. 每个节点非红即黑;
  2. 根节点总是黑色的;
  3. 每个叶子节点都是黑色的空节点(NIL 节点);
  4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
  5. 从任意节点到它的叶子节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

和 AVL 树不同的是,红黑树并不追求严格的平衡,而是大致的平衡。正因如此,红黑树的查询效率稍有下降,因为红黑树的平衡性相对较弱,可能会导致树的高度较高,这可能会导致一些数据需要进行多次磁盘 IO 操作才能查询到,这也是 MySQL 没有选择红黑树的主要原因。也正因如此,红黑树的插入和删除操作效率大大提高了,因为红黑树在插入和删除节点时只需进行 O(1) 次数的旋转和变色操作,即可保持基本平衡状态,而不需要像 AVL 树一样进行 O(logn) 次数的旋转操作。

红黑树的应用还是比较广泛的,TreeMap、TreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。对于数据在内存中的这种情况来说,红黑树的表现是非常优异的。

B 树& B+树

B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。

目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。

B 树& B+树两者有何异同呢?

  • B 树的所有节点既存放键(key) 也存放数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
  • 在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+树的范围查询,只需要对链表进行遍历即可。

综上,B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。


参考链接


Panel
titleContent Menu

Table of Contents