Versions Compared
Key
- This line was added.
- This line was removed.
- Formatting was changed.
什么是动态规划?
动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。
dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems.
以上定义来自维基百科,看定义感觉还是有点抽象。简单来说,动态规划其实就是,给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。
一般这些子问题很相似,可以通过函数关系式递推出来。然后呢,动态规划就致力于解决每个子问题一次,减少重复计算,比如斐波那契数列就可以看做入门级的经典动态规划问题。
动态规划核心思想
动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算。
我们来看下,网上比较流行的一个例子:
- A :"1+1+1+1+1+1+1+1 =?"
- A :"上面等式的值是多少"
- B : 计算 :计算 "8"
- A : 在上面等式的左边写上 :在上面等式的左边写上 "1+" 呢?
- A : :"此时等式的值为多少"
- B : 很快得出答案 :很快得出答案 "9"
- A : :"你怎么这么快就知道答案了"
- A : :"只要在8的基础上加1就行了"
- A : :"所以你不用重新计算,因为你记住了第一个等式的值为8!动态规划算法也可以说是 '记住求过的解来节省时间'"
一个例子带你走进动态规划 -- 青蛙跳阶问题
暴力递归
leetcode原题:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法。
有些小伙伴第一次见这个题的时候,可能会有点蒙圈,不知道怎么解决。其实可以试想:
- 要想跳到第10级台阶,要么是先跳到第9级,然后再跳1级台阶上去;要么是先跳到第8级,然后一次迈2级台阶上去。
- 同理,要想跳到第9级台阶,要么是先跳到第8级,然后再跳1级台阶上去;要么是先跳到第7级,然后一次迈2级台阶上去。
- 要想跳到第8级台阶,要么是先跳到第7级,然后再跳1级台阶上去;要么是先跳到第6级,然后一次迈2级台阶上去。
假设跳到第n级台阶的跳数我们定义为f(n),很显然就可以得出以下公式:
Code Block |
---|
f(10)f(10) = f(9) f(9)+ f(8) f (9) = f(8) + f(7) f (8) = f(7) + f(6) ... f(3) = f(2) + f(1) 即通用公式为: f(n) = f(n-1) + f(n-2) |
那f(2) 或者 f(1) 等于多少呢?
- 当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
- 当只有1级台阶时,只有一种跳法,即f(1)= 1;
因此可以用递归去解决这个问题:
Code Block | ||
---|---|---|
| ||
class Solution { public int numWays(int n) { if(n == 1){ return 1; } if(n == 2){ return 2; } return numWays(n-1) + numWays(n-2); } } |
去leetcode提交一下,发现有问题,超出时间限制了
为什么超时了呢?递归耗时在哪里呢?先画出递归树看看:
- 要计算原问题 f(10),就需要先计算出子问题 f(9) 和 f(8)
- 然后要计算 f(9),又要先算出子问题 f(8) 和 f(7),以此类推。
- 一直到 f(2) 和 f(1),递归树才终止。
我们先来看看这个递归的时间复杂度吧:
Code Block |
---|
递归时间复杂度 = 解决一个子问题时间*子问题个数 |
- 一个子问题时间 = f(n-1)+f(n-2),也就是一个加法的操作,所以复杂度是 f(n-1) + f(n-2),也就是一个加法的操作,所以复杂度是 O(1);
- 问题个数 = 递归树节点的总数,递归树的总节点 = 2^n-1,所以是复杂度O(2^n)。
因此,青蛙跳阶,递归解法的时间复杂度 = O(1) * O(2^n) = O(2^n),就是指数级别的,爆炸增长的,如果n比较大的话,超时很正常的了。
回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如f(8)被计算了两次,f(7)被重复计算了3次回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如f(8)被计算了两次,f(7)被计算了3次...所以这个递归算法低效的原因,就是存在大量的重复计算!
既然存在大量重复计算,那么我们可以先把计算好的答案存下来,即造一个备忘录,等到下次需要的话,先去备忘录查一下,如果有,就直接取就好了,备忘录没有才开始计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法。既然存在大量重复计算,那么我们可以先把计算好的答案存下来,即造一个备忘录,等到下次需要的话,先去备忘录查一下,如果有,就直接取就好了,备忘录没有才开始计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法。
带备忘录的递归解法(自顶向下)
一般使用一个数组或者一个哈希map充当这个备忘录。
- 第一步,f(10)第一步,f(10)= f(9) + f(8),f(9) 和f(8)都需要计算出来,然后再加到备忘录中,如下:和f(8)都需要计算出来,然后再加到备忘录中,如下:
- 第二步, f(9) = f(8)+ f(7),f(8)= f(7)f(8)+ f(7),f(8)= f(7)+ f(6), 因为 f(8) 已经在备忘录中啦,所以可以省掉,f(7),f(6)都需要计算出来,加到备忘录中~),f(6)都需要计算出来,加到备忘录中~
- 第三步, f(8) = f(7)f(7) + f(6),发现f,发现f(8),f、f(7),f(6)全部都在备忘录上了,所以都可以剪掉。)、f(6)全部都在备忘录上了,所以都可以剪掉。
所以呢,用了备忘录递归算法,递归树变成光秃秃的树干咯,如下:
带备忘录的递归算法,子问题个数=树节点数=n,解决一个子问题还是O(1),所以带,所以带备忘录的递归算法的时间复杂度是O(n)。接下来呢,我们用带备忘录的递归算法去撸代码,解决这个青蛙跳阶问题的超时问题咯~,代码如下:
Code Block | ||
---|---|---|
| ||
public class Solution { //使用哈希map,充当备忘录的作用 Map<Integer, Integer> tempMap = new HashMap(); public int numWays(int n) { // n = 0 也算1种 if (n == 0) { return 1; } if (n <= 2) { return n; } //先判断有没计算过,即看看备忘录有没有 if (tempMap.containsKey(n)) { //备忘录有,即计算过,直接返回 return tempMap.get(n); } else { // 备忘录没有,即没有计算过,执行递归计算,并且把结果保存到备忘录map中,对1000000007取余(这个是leetcode题目规定的) tempMap.put(n, (numWays(n - 1) + numWays(n - 2)) % 1000000007); return tempMap.get(n); } } } |
去leetcode提交一下,如图,稳了:
其实,还可以用动态规划解决这道题。
自底向上的动态规划
动态规划跟带备忘录的递归解法基本思想是一致的,都是减少重复计算,时间复杂度也都是差不多。但是呢:
- 带备忘录的递归,是从f(10)往f(1)方向延伸求解的,所以也称为1)方向延伸求解的,所以也称为自顶向下的解法。
- 动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f(1)往f(10)方向,往上推求解,所以称为10)方向,往上推求解,所以称为自底向上的解法。
动态规划有几个典型特征,最优子结构、状态转移方程、边界、重叠子问题。在青蛙跳阶问题中:
- f(n-1) 和f和 f(n-2) 称为 f(n) 的最优子结构的最优子结构。
- f(n)= f(n-1)+f(n-2)就称为状态转移方程f(n-1) + f(n-2)就称为状态转移方程。
- f(1)=1, f(2)=2 就是边界啦就是边界啦。
- 比如f(10)= f(9)+f(8),f,f(9) = f(8) + f(7) ,f,f(8)就是重叠子问题。就是重叠子问题。
我们来看下自底向上的解法,从f(1)往f(10)方向,想想是不是直接一个for循环就可以解决啦,如下:10)方向,想想是不是直接一个for循环就可以解决啦,如下:
Image Modified
带备忘录的递归解法,空间复杂度是O带备忘录的递归解法,空间复杂度是O(n),但是呢,仔细观察上图,可以发现,f(n),但是呢,仔细观察上图,可以发现,f(n)只依赖前面两个数,所以只需要两个变量a和b来存储,就可以满足需求了,因此空间复杂度是O只依赖前面两个数,所以只需要两个变量a和b来存储,就可以满足需求了,因此空间复杂度是O(1)就可以啦就可以啦:
Image Modified
动态规划实现代码如下:
Code Block | ||
---|---|---|
| ||
public class Solution { public int numWays(int n) { if (n<= 1) { return 1; } if (n == 2) { return 2; } int a = 1; int b = 2; int temp = 0; for (int i = 3; i <= n; i++) { temp = (a + b)% 1000000007; a = b; b = temp; } return temp; } } |
动态规划的解题套路
什么样的问题可以考虑使用动态规划解决呢?
如果一个问题,可以把所有可能的答案穷举出来,并且穷举出来后,发现存在重叠子问题,就可以考虑使用动态规划。
比如一些求最值的场景,如最长递增子序列、最小编辑距离、背包问题、凑零钱问题等等,都是动态规划的经典应用场景。
动态规划的解题思路
动态规划的核心思想就是拆分子问题,记住过往,减少重复计算。 并且动态规划一般都是自底向上的,因此到这里,基于 并且动态规划一般都是自底向上的,因此到这里,基于青蛙跳阶问题,我总结了一下我做动态规划的思路:
- 穷举分析
- 确定边界
- 找出规律,确定最优子结构
- 写出状态转移方程
1.
穷举分析穷举分析
- 当台阶数是1的时候,有一种跳法,f(1)当台阶数是1的时候,有一种跳法,f(1) =1
- 当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
- 当台阶是3级时,想跳到第3级台阶,要么是先跳到第2级,然后再跳1级台阶上去,要么是先跳到第 1级,然后一次迈 2 级台阶上去。所以f(3) = f(2) + f(1) =3
- 当台阶是4级时,想跳到第3级台阶,要么是先跳到第3级,然后再跳1级台阶上去,要么是先跳到第 2级,然后一次迈 2 级台阶上去。所以f(4) = f(3) + f(2) =5
- 当台阶是5级时......
2. 确定边界
通过穷举分析,我们发现,当台阶数是1的时候或者2的时候,可以明确知道青蛙跳法。f(1) 通过穷举分析,我们发现,当台阶数是1的时候或者2的时候,可以明确知道青蛙跳法。f(1)=1,f(2)= 2,当台阶n>=3时,已经呈现出规律f(3) = f(2) + f(1) = 3,因此f(1) 3,因此 f(1)=1,f(2)=2就是青蛙跳阶的边界。
3. 找规律,确定最优子结构
n>=3时,已经呈现出规律 f(n) = f(n-1) + f(n-2) ,因此,f(n-1) 和f和 f(n-2) 称为 f(n) 的最优子结构。什么是最优子结构?有这么一个解释:
4,一道动态规划问题,其实就是一个递推问题。假设当前决策结果是f(n),则最优子结构就是要让 ,则最优子结构就是要让 f(n-k) 最优,最优子结构性质就是能让转移到n的状态是最优的,并且与后面的决策没有关系,即让后面的决策安心地使用前面的局部最优解的一种性质
4. 写出状态转移方程
通过前面3步,穷举分析,确定边界,最优子结构,我们就可以得出状态转移方程啦:
5. 代码实现
我们实现代码的时候,一般注意从底往上遍历哈,然后关注下边界情况,空间复杂度,也就差不多啦。动态规划有个框架的,大家实现的时候,可以考虑适当参考一下:
Code Block |
---|
dp[0][0][...] = 边界值 for(状态1 :所有状态1的值){ for(状态2 :所有状态2的值){ for(...){ //状态转移方程 dp[状态1][状态2][...] = 求最值 } } } |
leetcode案例分析
我们一起来分析一道经典leetcode题目吧
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
示例 1:
Code Block |
---|
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。 |
示例 2:
Code Block |
---|
输入:nums = [0,1,0,3,2,3] 输出:4 |
我们按照以上动态规划的解题思路,
- 穷举分析
- 确定边界
- 找规律,确定最优子结构
- 状态转移方程
穷举分析
因为动态规划,核心思想包括拆分子问题,记住过往,减少重复计算。 所以我们在思考原问题:数组num数组num[i]
的最长递增子序列长度时,可以思考下相关子问题,比如原问题是否跟子问题num[i-1]
的最长递增子序列长度有关呢?
自顶向上的穷举
这里观察规律,显然是有关系的,我们还是遵循动态规划自底向上的原则,基于示例1的数据,从数组只有一个元素开始分析。
- 当nums只有一个元素10时,最长递增子序列是[10],长度是1.
- 当nums需要加入一个元素9时,最长递增子序列是[10]或者[9],长度是1。
- 当nums再加入一个元素2时,最长递增子序列是[10]或者[9]或者[2],长度是1。
- 当nums再加入一个元素5时,最长递增子序列是[2,5],长度是2。
- 当nums再加入一个元素3时,最长递增子序列是[2,5]或者[2,3],长度是2。
- 当nums再加入一个元素7时,,最长递增子序列是[2,5,7]或者[2,3,7],长度是3。
- 当nums再加入一个元素101时,最长递增子序列是[2,5,7,101]或者[2,3,7,101],长度是4。
- 当nums再加入一个元素18时,最长递增子序列是[2,5,7,101]或者[2,3,7,101]或者[2,5,7,18]或者[2,3,7,18],长度是4。
- 当nums再加入一个元素7时,最长递增子序列是[2,5,7,101]或者[2,3,7,101]或者[2,5,7,18]或者[2,3,7,18],长度是4.
分析找规律,拆分子问题
通过上面分析,我们可以发现一个规律:
如果新加入一个元素nums如果新加入一个元素nums[i]
, 最长递增子序列要么是以nums,最长递增子序列要么是以nums[i]
结尾的递增子序列,要么就是nums[i-1]
的最长递增子序列。看到这个,是不是很开心,nums。看到这个,是不是很开心,nums[i]
的最长递增子序列已经跟子问题nums[i-1]
的最长递增子序列有关联了。
Code Block |
---|
原问题数组nums[i]的最长递增子序列 = max(子问题数组nums[i-1]的最长递增子序列/, nums[i]结尾的最长递增子序列) |
是不是感觉成功了一半呢?但是如何把nums如何把nums[i]
结尾的递增子序列也转化为对应的子问题呢?要是nums呢?要是nums[i]
结尾的递增子序列也跟nums结尾的递增子序列也跟nums[i-1]
的最长递增子序列有关就好了。又或者nums的最长递增子序列有关就好了。又或者nums[i]
结尾的最长递增子序列,跟前面子问题num结尾的最长递增子序列,跟前面子问题num[j]
(0=<j<i)结尾的最长递增子序列有关就好了,带着这个想法,我们又回头看看穷举的过程:(0=<j<i)
结尾的最长递增子序列有关就好了,带着这个想法,我们又回头看看穷举的过程:
nums[i]
的最长递增子序列,不就是从以数组num从以数组num[i]
每个元素结尾的最长子序列集合,取元素最多(也就是长度最长)那个嘛,所以原问题,我们转化成求出以数组nums每个元素结尾的最长子序列集合,再取最大值嘛。哈哈,想到这,我们就可以用dp用dp[i]
表示以num表示以num[i]
这个数结尾的最长递增子序列的长度啦,然后再来看看其中的规律:
其实,nums[i]
结尾的自增子序列,只要找到比nums结尾的自增子序列,只要找到比nums[i]
小的子序列,加上nums小的子序列,加上nums[i]
就可以啦。显然,可能形成多种新的子序列,我们选最长那个,就是dp就可以啦。显然,可能形成多种新的子序列,我们选最长那个,就是dp[i]
的值啦的值啦:
nums[3]=5
,以,以5
结尾的最长子序列就是[2,5]
,因为从数组下标0到3
遍历,只找到了子序列[2]
比5
小,所以就是[2]+[5]
啦,即dp[4]=2
nums[4]=3
,以,以3
结尾的最长子序列就是[2,3]
,因为从数组下标0到4
遍历,只找到了子序列[2]
比3
小,所以就是[2]+[3]
啦,即dp[4]=2
nums[5]=
7,以7
,以7
结尾的最长子序列就是[2,5,7]
和[2,3,7]
,因为从数组下标0到5
遍历,找到2,5和3
都比7小,所以就有[2,7],[5,7],[3,7],[2,5,7]和[2,3,7]
这些子序列,最长子序列就是[2,5,7]和[2,3,7]
,它俩不就是以5
结尾和3
结尾的最长递增子序列+[7]来的嘛!所以,dp[5]=3 =dp[3]+1=dp[4]+1
。
很显然有这个规律:一个以nums很显然有这个规律:一个以nums[i]
结尾的数组nums
结尾的数组nums
,如果存在j
属于区间[0,i-1]
,并且num[i]>num[j]
的话,则有:dp(i) = max(dp(j)) +
1
最简单的边界情况
当nums数组只有一个元素时,最长递增子序列的长度dp当nums数组只有一个元素时,最长递增子序列的长度dp(1)=1
,当nums数组有两个元素时,dp,当nums数组有两个元素时,dp(2)=
2或者1, 因此边界就是dp2
或者1
, 因此边界就是dp(1)=
1。1
。
确定最优子结构
从穷举分析,我们可以得出,以下的最优结构:
Code Block |
---|
dp(i) = max(dp(j)) + 1,存在j属于区间[0,i-1], 并且num[i]>num > num[j]。 |
max(dp(j))
就是最优子结构。
状态转移方程
通过前面分析,我们就可以得出状态转移方程啦:
所以数组num所以数组num[i]
的最长递增子序列就是:
Code Block |
---|
最长递增子序列 = max(dp[i]) |
代码实现
Code Block | ||
---|---|---|
| ||
class Solution { public int lengthOfLIS(int[] nums) { if (nums.length == 0) { return 0; } int[] dp = new int[nums.length]; // 初始化就是边界情况 dp[0] = 1; int maxans = 1; // 自底向上遍历 for (int i = 1; i < nums.length; i++) { dp[i] = 1; // 从下标0到i遍历 for (int j = 0; j < i; j++) { // 找到前面比nums[i]小的数nums[j], 即有dp[i]= dp[j]+1 if (nums[j] < nums[i]) { // 因为会有多个小于nums[i]的数,也就是会存在多种组合了嘛,我们就取最大放到dp[i] dp[i] = Math.max(dp[i], dp[j] + 1); } } // 求出dp[i]后,dp最大那个就是nums的最长递增子序列啦 maxans = Math.max(maxans, dp[i]); } return maxans; } } |
参考资料
Panel | ||
---|---|---|
| ||
|