Versions Compared
compared with
Key
- This line was added.
- This line was removed.
- Formatting was changed.
LFU (Least Frequently Used) 是一种用于缓存管理的算法。它通过跟踪每个缓存项被访问的频率来决定哪些项应该被移除。LFU算法倾向于保留那些使用频率较高的项,而移除那些使用频率较低的项。
Tip |
---|
注意LFU和LRU的区别:
|
工作原理
- 计数器:每个缓存项都有一个计数器,用于记录该项被访问的次数。
- 增加计数:每次缓存项被访问时,其计数器加一。
- 移除策略:当缓存满时,移除计数器值最小的项。如果有多个项的计数器值相同,则根据预定规则(如最早被访问的项)移除其中一个。
如何实现
LFU算法的实现可以使用多种数据结构,如哈希表、双向链表和优先队列。以下是一种常见的实现方法:
使用哈希表和优先队列:
- 哈希表 (cache):用于存储缓存项及其计数器。
- 优先队列 (min-heap):用于快速找到计数器值最小的项。
具体步骤如下:
插入/更新缓存项:
- 如果缓存项已存在,更新其计数器并调整优先队列中的位置。
- 如果缓存项不存在,检查缓存是否已满。如果已满,移除优先队列中计数器值最小的项,然后插入新项。
访问缓存项:
- 如果缓存项存在,更新其计数器并调整优先队列中的位置。
- 如果缓存项不存在,返回未命中。
应用场景
LFU算法适用于以下场景:
- 数据访问具有明显的热点数据,且热点数据相对稳定。
- 需要高效管理缓存资源,减少缓存未命中率。
Go实现
Code Block | ||
---|---|---|
| ||
package lfu import ( "container/list" "sync" ) type entry struct { key any value any freq int } type LFUCache struct { mtx sync.Mutex // protects the cache capacity int size int minFreq int cache map[any]*list.Element frequency map[int]*list.List } // NewLFUCache creates a new LFU cache func NewLFUCache(capacity int) *LFUCache { return &LFUCache{ capacity: capacity, cache: make(map[any]*list.Element), frequency: make(map[int]*list.List), } } // Get retrieves a value from the cache func (c *LFUCache) Get(key any) any { c.mtx.Lock() defer c.mtx.Unlock() if elem, found := c.cache[key]; found { c.incrementFrequency(elem) return elem.Value.(*entry).value } return nil } // Put inserts or updates a value in the cache func (c *LFUCache) Put(key, value any) { c.mtx.Lock() defer c.mtx.Unlock() if c.capacity == 0 { return } if elem, found := c.cache[key]; found { elem.Value.(*entry).value = value c.incrementFrequency(elem) } else { if c.size == c.capacity { c.evict() } newEntry := &entry{key, value, 1} if c.frequency[1] == nil { c.frequency[1] = list.New() } elem := c.frequency[1].PushFront(newEntry) c.cache[key] = elem c.minFreq = 1 c.size++ } } // incrementFrequency increases the frequency of a cache entry func (c *LFUCache) incrementFrequency(elem *list.Element) { e := elem.Value.(*entry) oldFreq := e.freq e.freq++ c.frequency[oldFreq].Remove(elem) if c.frequency[oldFreq].Len() == 0 { delete(c.frequency, oldFreq) if c.minFreq == oldFreq { c.minFreq++ } } if c.frequency[e.freq] == nil { c.frequency[e.freq] = list.New() } newElem := c.frequency[e.freq].PushFront(e) c.cache[e.key] = newElem } // evict removes the least frequently used cache entry func (c *LFUCache) evict() { list := c.frequency[c.minFreq] elem := list.Back() if elem != nil { list.Remove(elem) delete(c.cache, elem.Value.(*entry).key) c.size-- } } |
Tip |
---|
这种通过hash表的方式实现的过期淘汰不是很优雅,其实可以通过最小堆的方式来实现过期淘汰,感兴趣的朋友可以自行试试。这种通过hash表的方式实现的过期淘汰不是很优雅,并且缺少时间的记录。其实可以通过最小堆的方式来实现过期淘汰,感兴趣的朋友可以自行试试。 |
参考资料
Panel | ||
---|---|---|
| ||
|