基本介绍

Go语言中的goroutine虽然相对于系统线程来说比较轻量级(初始栈大小仅2KB),(并且支持动态扩容),而正常采用JavaC++等语言启用的线程一般都是内核态的占用的内存资源一般在4m左右,而假设我们的服务器CPU内存为4G,那么很明显内核态线程的并发总数量也就1024个,相反Go语言的协程则可以达到4*1024*1024/2=200w,这么一看就明白了为什么Go语言天生支持高并发。

痛点描述

协程执行的资源消耗大

但是在高并发量下的goroutine频繁创建和销毁对于性能损耗以及GC来说压力也不小。充分将goroutine复用,减少goroutine的创建/销毁的性能损耗,这便是grpoolgoroutine进行池化封装的目的。例如,针对于100W个执行任务,使用goroutine的话需要不停创建并销毁100Wgoroutine,而使用grpool也许底层只需要几万个goroutine便能充分复用地执行完成所有任务。

经测试,goroutine池对于业务逻辑的执行效率(降低执行时间/CPU使用率)提升不大,甚至没有原生的goroutine执行快速(池化goroutine执行调度并没有底层Go调度器高效,因为池化goroutine的执行调度也是基于底层Go调度器),但是由于采用了复用的设计,池化后对内存的使用率得到极大的降低。

大量协程影响全局协程调度

某些业务模块需要动态创建协程来执行,例如异步采集任务、指标计算任务等等。这些业务逻辑不是服务的核心逻辑,并且会产生协程。在极端情况下可能会引起协程大暴涨,影响底层Go引擎全局的写成调度,造成服务整体执行延迟较大。

拿异步采集任务来举个例子,每隔5秒执行一次,每次创建100个协程来采集不同的目标端。当采集出现网络延迟时,上一步的任务并未执行完,下一次的任务又新创建协程开始执行。当积累的任务越来越多,会造成协程的暴涨,影响全局的服务执行。针对这一类场景,我们可以通过池化的技术来将任务进行定量执行,当池中的任务堆积到达一定量时,后续的任务应当阻塞。例如,我们设定池中任务的最大数量为10000个,后续不停将任务丢到池中执行,当超过池的最大数量时,任务执行将会阻塞,但并不会影响全局的服务执行。

概念介绍

Pool

goroutine池,用于管理若干可复用的goroutine协程资源。

Job

添加到池对象的任务队列中等待执行的任务,是一个Func的方法,一个Job同时只能被一个Worker获取并执行。Func的定义如下:

type Func func(ctx context.Context)

Worker

池对象中参与任务执行的goroutine,一个Worker可以执行若干个Job,直到队列中再无等待的Job

使用介绍

使用方式

import "github.com/gogf/gf/v2/os/grpool"

使用场景

管理大量异步任务的场景、需要异步协程复用的场景、需要降低内存使用率的场景。

接口文档

func Add(ctx context.Context, f Func) error
func AddWithRecover(ctx context.Context, userFunc Func, recoverFunc RecoverFunc) error
func Jobs() int
func Size() int
func New(limit ...int) *Pool
    func (p *Pool) Add(ctx context.Context, f Func) error
    func (p *Pool) AddWithRecover(ctx context.Context, userFunc Func, recoverFunc RecoverFunc) error
    func (p *Pool) Cap() int
    func (p *Pool) Close()
    func (p *Pool) IsClosed() bool
    func (p *Pool) Jobs() int
    func (p *Pool) Size() int


通过grpool.New方法创建一个goroutine池对象,参数limit为非必需参数,用于限定池中的工作goroutine数量,默认为不限制。需要注意的是,任务可以不停地往池中添加,没有限制,但是工作的goroutine是可以做限制的。我们可以通过Size()方法查询当前的工作goroutine数量,使用Jobs()方法查询当前池中待处理的任务数量。

同时,为便于使用,grpool包提供了默认的goroutine池,默认的池对象不限制goroutine数量,直接通过grpool.Add即可往默认的池中添加任务,任务参数必须是一个 func()类型的函数/方法。

这个模块大家问得最多的是外部如何给grpool里面的任务传递参数,具体请看示例2。

使用示例

使用默认的goroutine池,限制100goroutine执行1000个任务

package main

import (
 	"context"
 	"fmt"
 	"github.com/gogf/gf/v2/os/gctx"
 	"github.com/gogf/gf/v2/os/grpool"
 	"github.com/gogf/gf/v2/os/gtimer"
 	"time"
)

var (
    ctx = gctx.New()
)

func job(ctx context.Context) {
 	time.Sleep(1*time.Second)
}

func main() {
 	pool := grpool.New(100)
 	for i := 0; i < 1000; i++ {
     	pool.Add(ctx,job)
 	}
 	fmt.Println("worker:", pool.Size())
 	fmt.Println(" jobs:", pool.Jobs())
 	gtimer.SetInterval(ctx,time.Second, func(ctx context.Context) {
     	fmt.Println("worker:", pool.Size())
     	fmt.Println(" jobs:", pool.Jobs())
     	fmt.Println()
 	})

 	select {}
}

这段程序中的任务函数的功能是sleep 1秒钟,这样便能充分展示出goroutine数量限制功能。其中,我们使用了gtime.SetInterval定时器每隔1秒钟打印出当前默认池中的工作goroutine数量以及待处理的任务数量。

异步传参:来个新手容易出错的例子

这个例子在go版本≥1.22时不再生效,即go 1.22以后不再有循环变量陷阱。

package main

import (
 	"context"
 	"fmt"
 	"github.com/gogf/gf/v2/os/gctx"
 	"github.com/gogf/gf/v2/os/grpool"
 	"sync"
)

var (
    ctx = gctx.New()
)

func main() {
 	wg := sync.WaitGroup{}
 	for i := 0; i < 10; i++ {
    	wg.Add(1)
    	grpool.Add(ctx,func(ctx context.Context) {
       		fmt.Println(i)
       		wg.Done()
    	})
 	}
 	wg.Wait()
} 

我们这段代码的目的是要顺序地打印出0-9,然而运行后却输出:

10
10
10
10
10
10
10
10
10
10

为什么呢?这里的执行结果无论是采用go关键字来执行还是grpool来执行都是如此。原因是,对于异步线程/协程来讲,函数进行异步执行注册时,该函数并未真正开始执行(注册时只在goroutine的栈中保存了变量i的内存地址),而一旦开始执行时函数才会去读取变量i的值,而这个时候变量i的值已经自增到了10。 清楚原因之后,改进方案也很简单了,就是在注册异步执行函数的时候,把当时变量i的值也一并传递获取;或者把当前变量i的值赋值给一个不会改变的临时变量,在函数中使用该临时变量而不是直接使用变量i

改进后的示例代码如下:

1)、使用go关键字

package main

import (
    "fmt"
    "sync"
)

func main() {
    wg := sync.WaitGroup{}
    for i := 0; i < 10; i++ {
        wg.Add(1)
        go func(v int){
            fmt.Println(v)
            wg.Done()
        }(i)
    }
    wg.Wait()
}

执行后,输出结果为:

0
9
3
4
5
6
7
8
1
2 

注意,异步执行时并不会保证按照函数注册时的顺序执行,以下同理。

2)、使用临时变量

package main

import (
 	"context"
 	"fmt"
 	"github.com/gogf/gf/v2/os/gctx"
 	"github.com/gogf/gf/v2/os/grpool"
 	"sync"
)

var (
   ctx = gctx.New()
)

func main() {
 	wg := sync.WaitGroup{}
 	for i := 0; i < 10; i++ {
    	wg.Add(1)
    	v := i
    	grpool.Add(ctx, func(ctx context.Context) {
       		fmt.Println(v)
       		wg.Done()
    	})
 	}
 	wg.Wait()
}  

执行后,输出结果为:

9
0
1
2
3
4
5
6
7
8

这里可以看到,使用grpool进行任务注册时,注册方法为func(ctx context.Context),因此无法在任务注册时把变量i的值注册进去(请尽量不要通过ctx传递业务参数),因此只能采用临时变量的形式来传递当前变量i的值。

自动捕获goroutine错误:AddWithRecover

AddWithRecover将新作业推送到具有指定恢复功能的池中。当userFunc执行过程中出现panic时,会调用可选的Recovery Func。如果没有传入Recovery Func或赋空,则忽略userFunc引发的panic。该作业将异步执行。

package main

import (
	"context"
	"fmt"
	"github.com/gogf/gf/v2/container/garray"
	"github.com/gogf/gf/v2/os/gctx"
	"github.com/gogf/gf/v2/os/grpool"
	"time"
)

var (
	ctx = gctx.New()
)
func main() {
	array := garray.NewArray(true)
	grpool.AddWithRecover(ctx, func(ctx context.Context) {
		array.Append(1)
		array.Append(2)
		panic(1)
	}, func(err error) {
		array.Append(1)
	})
	grpool.AddWithRecover(ctx, func(ctx context.Context) {
		panic(1)
		array.Append(1)
	})
	time.Sleep(500 * time.Millisecond)
	fmt.Print(array.Len())
}

测试一下grpool和原生的goroutine之间的性能

1)、grpool

package main

import (
 	"context"
 	"fmt"
 	"github.com/gogf/gf/v2/os/gctx"
 	"github.com/gogf/gf/v2/os/grpool"
 	"github.com/gogf/gf/v2/os/gtime"
 	"sync"
 	"time"
)

var (
   ctx = gctx.New()
)

func main() {
 	start := gtime.TimestampMilli()
 	wg := sync.WaitGroup{}
 	for i := 0; i < 10000000; i++ {
    	wg.Add(1)
    	grpool.Add(ctx,func(ctx context.Context) {
       		time.Sleep(time.Millisecond)
       		wg.Done()
    	})
 	}
 	wg.Wait()
 	fmt.Println(grpool.Size())
 	fmt.Println("time spent:", gtime.TimestampMilli() - start)
} 

2)、goroutine

package main

import (
 	"fmt"
 	"github.com/gogf/gf/v2/os/gtime"
 	"sync"
 	"time"
)


func main() {
 	start := gtime.TimestampMilli()
 	wg := sync.WaitGroup{}
 	for i := 0; i < 10000000; i++ {
    	wg.Add(1)
    	go func() {
       		time.Sleep(time.Millisecond)
       		wg.Done()
    	}()
 	}
 	wg.Wait()
 	fmt.Println("time spent:", gtime.TimestampMilli() - start)
} 

3)、运行结果比较

测试结果为两个程序各运行3次取平均值。

grpool:
    goroutine count: 847313
     memory   spent: ~2.1 G
     time     spent: 37792 ms

goroutine:
    goroutine count: 1000W
    memory    spent: ~4.8 GB
    time      spent: 27085 ms

可以看到池化过后,执行相同数量的任务,goroutine数量减少很多,相对的内存也降低了一倍以上,CPU时间耗时也勉强可以接受。



Content Menu

  • No labels

6 Comments

  1. 能不能新增一个Stop/Start方法?不想每次都Close+New去控制队列...

  2. 有时需要限制一下速率,有没有比较优的示例代码。

    1. New的时候传参

  3. 异步传参:来个新手容易出错的例子

    郭强 这块的错误例子在go1.22版本后应该不会再出现了,1.22有修改for循环变量的一些特性,可能说明一下会比较好

  4. 如何给任务传递参数:

        pool := grpool.New(100)
        // 闭包
        var job = func(i int) grpool.Func {
            return func(ctx context.Context) {
                g.Log().Debug(ctx, "i >>", i)
                time.Sleep(1 * time.Second)
            }
        }
    
        for i := 0; i < 1000; i++ {
            // v := i
            pool.Add(ctx, job(i))
        }
        g.Log().Debug(ctx, "pool working count >>", pool.Size())
        g.Log().Debug(ctx, "pool jobs count >>", pool.Jobs())
        fmt.Println()
    
        gtimer.Add(ctx, time.Second, func(ctx context.Context) {
            g.Log().Debug(ctx, "pool working count >>", pool.Size())
            g.Log().Debug(ctx, "pool jobs count >>", pool.Jobs())
            fmt.Println()
        })
        select {}


  5. 最新的版本v2.5.2不支持只传两个参数了

    grpool.AddWithRecover(ctx, func(ctx context.Context) {
    		panic(1)
    		array.Append(1)
    	})